Computer-Aided Drafting _Second_2425_Section_BSIEOUMN 1-1
BSIE 1-1

Session 1: Introduction to CAD and Initial Sketching 

  • Objective: Understand CAD basics and sketch a robotic component with precise measurements. 

  • Topics: 

    • Overview of CAD in robotics: Designing robotic arms (e.g., grippers, joints) and AGVs (e.g., chassis, wheels). 

    • Introduction to FreeCAD: Interface, workbenches (Part, Sketcher), units (mm precision). 

    • Importance of measurements: Tolerances, scale, and real-world application (e.g., motor mounts). 

    • Sketching principles: Orthographic views (top, front, side), dimensioning rules. 

  • Activity: 

    • Students sketch a robotic arm (e.g., base, arm, gripper) or AGV (e.g., frame, wheels, sensor mounts) on paper. 

    • Specify exact measurements (e.g., arm length: 150 mm, wheel diameter: 50 mm) with ±0.1 mm tolerance. 

  • Assignment: Submit a hand-drawn sketch with labeled dimensions (strictly enforced). 

Session 2: 2D Drafting in FreeCAD – Base Components 

  • Objective: Translate sketches into precise 2D CAD drawings. 

  • Topics: 

    • FreeCAD Sketcher workbench: Creating 2D profiles (lines, circles, constraints). 

    • Applying constraints: Geometric (parallel, perpendicular) and dimensional (length, angle). 

    • Robotics focus: Drafting base plates for arms (e.g., 100x100 mm) or AGV chassis (e.g., 200x150 mm). 

    • Embedding electronics: Adding mounting holes for microcontrollers (e.g., ESP32: 51.5x28 mm). 

  • Activity: 

    • Create a 2D sketch of the robotic arm base or AGV chassis in FreeCAD. 

    • Example: Arm base with 4x M3 holes (3 mm diameter, 40 mm apart); AGV chassis with wheel slots (50 mm wide). 

    • Enforce precision: Check all dimensions against sketch (±0.1 mm). 

  • Assignment: Export 2D sketch as PDF with dimension annotations. 

Session 3: 3D Modeling – Robotic Structure 

  • Objective: Build 3D models of robotic components with accurate measurements. 

  • Topics: 

    • FreeCAD Part workbench: Extruding 2D sketches into 3D solids (e.g., base thickness: 5 mm). 

    • Robotics components: Arm segments (e.g., 150 mm long, 20 mm wide) or AGV body (e.g., 30 mm high). 

    • Boolean operations: Cutting holes for motors (e.g., servo: 40x20x36 mm) or sensors (e.g., ultrasonic: 45x20 mm). 

    • Precision checks: Using measurement tools to verify dimensions. 

  • Activity: 

    • Extrude the 2D base into a 3D model, adding arm segments or AGV wheel mounts. 

    • Example: Robotic arm with a 50 mm pivot joint; AGV with 10 mm wheel axles. 

    • Strict measurement enforcement: All parts must match sketch specs. 

  • Assignment: Submit a 3D model file (.FCStd) with a screenshot showing key dimensions. 

Session 4: Assemblies and Embedded Systems Integration 

  • Objective: Assemble robotic parts and integrate microcontroller/electronics housings. 

  • Topics: 

    • FreeCAD Assembly workbench (or A2plus addon): Combining parts (e.g., arm base + segments, AGV chassis + wheels). 

    • Robotics focus: Joints for arms (e.g., servo mounts) or AGV wheel alignment (e.g., 100 mm wheelbase). 

    • Electronics integration: Designing enclosures for microcontrollers (e.g., STM32: 44x22 mm, Raspberry Pi: 85x56 mm). 

    • Tolerances for fit: Clearance for screws (e.g., 0.2 mm), motor shafts (e.g., 5 mm diameter). 

  • Activity: 

    • Assemble the robotic arm (base, arm, gripper) or AGV (chassis, wheels, sensor mounts). 

    • Add a microcontroller housing (e.g., ESP32 slot with 2 mm walls, 10 mm height). 

    • Verify alignment and measurements (e.g., joint spacing: 50 mm ±0.1 mm). 

  • Assignment: Export assembly as .FCStd and provide an exploded view screenshot. 

Session 5: Final Detailing and Real-World Application 

  • Objective: Finalize CAD models with details for fabrication and embedded functionality. 

  • Topics: 

    • Adding fillets/chamfers for strength (e.g., 2 mm radius on edges). 

    • Detailing for robotics: Cable routing slots (e.g., 5 mm wide), sensor mounts (e.g., 20x20 mm platform). 

    • Exporting for manufacturing: STEP files for 3D printing, DXF for laser cutting. 

    • Simulation preview: Basic stress analysis (FreeCAD FEM workbench) for motor loads. 

  • Activity: 

    • Finalize the robotic arm (e.g., gripper with 10 mm finger gap) or AGV (e.g., sensor tower 30 mm high). 

    • Add mounting points for electronics (e.g., 4x M2 holes for STM32, 2 mm deep). 

    • Export as STEP and DXF, ensuring all measurements are exact. 

  • Assignment: Submit final .FCStd file, STEP/DXF exports, and a report justifying measurements (e.g., why 150 mm arm length). 

 
 

Key Features 

  1. Robotic Components: Focuses on practical designs—robotic arms (joints, grippers) and AGVs (chassis, wheels)—relevant to real-world applications. 

  2. Electronics and Microcontrollers: Incorporates precise enclosures for ESP32, STM32, or Raspberry Pi, ensuring compatibility with embedded systems. 

  3. FreeCAD Emphasis: Uses FreeCAD’s Sketcher, Part, and Assembly tools, aligning with your preference, while teaching CAD fundamentals. 

  4. Strict Measurements: Enforces ±0.1 mm precision throughout, reflecting your strict standards (e.g., hole spacing, part lengths). 

  5. Progressive Learning: Starts with sketches, moves to 2D drafting, 3D modeling, assemblies, and final detailing, building skills incrementally. 

  6. Real-World Tie-In: Prepares designs for fabrication (3D printing, laser cutting), linking CAD to physical robotics.